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Supersymmetric transformations of real potentials on the 
line 

J-M Sparenberg and D Baye 
Physique NucMaire Thhoriqueet Physique Math&"que, CP 229, Universil.5 Libre de Bmxelles. 
Campus Plaine. 8-1050 Brussels, Belgium 

Received 9 May 1995 

Abstract. A systematic study of supersymmetric (or Darboux) factorizations on the line is 
performed. All possible pairs of supersymmetric transformations with the same factorization 
energy xe reviewed: for such pairs, there is no condition on this energy. iterations of single 
uansformations and of pairs both allow arb imy modifications of the bound s p u n "  Different 
itemtive methods lead to compact mdytical equations depending on the initial potMtial and 
its solutions. Iterations of single transformations are able to transform an even potential inm 
an even potential. Particular cases of a method based on iteration of pain consme either the 
reflection coefficient at all energies or the norming constants of bound states, mese  results are 
compxed with previous methods established in other contexts. The most general supersymmebic 
trnnsfamation of a given potential is finally described, both with and without modifications of 
the bound spectrum. 

1. Introduction 

In one-dimensional problems, supersymmetric quantum mechanics [l, 21 offers a simple 
way of constructing new potentials and their solutions in terms of a known potential and its 
solutions. Usually, some properties of the initial potential are modified by the transformation 
while other properties remain unchanged. For instance, when the new potentials are not 
singular, their bound spectra differ at most by the ground state from the initial spectrum. 

For the line problem, many methods attempt to modify some properties of a potential, 
such as its spectrum, the norming constants of the bound states, or the asymptotic behaviour 
of the scattering states. Some of them [ 3 6 ]  are directly based on supersymmetry. A 
number of methods [7-91 are based on the Darboux factorization, which is equivalent to a 
supersymmetric transformation. Other methods [6,9-141 are based on general techniques of 
the inverse problem (see references in [IS]). Although partial comparisons between these 
methods appear in these works, no theory brings all the aspects of the different methods 
together. The aim of the present paper is to establish a general framework, based on 
supersymmetry, which contains previous works as particular cases. 

This theory is inspired by recent progress in the radial or half-line problem. About 
ten years ago, Sukumar [I61 derived the possible supersymmetric transformations for this 
case, together with the corresponding modifications of the phase shifts. Applications 
often require potentials which share the same phase shifts at all energies, i.e. phase- 
equivalent potentials, but which have different bound spectra [17]. Such potentials, with an 
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addition or a suppression of the ground state, can be obtained by pairs of supersymmetric 
transformations [17, IS]. Iterations of such pairs allow arbitrary modifications of the bound 
spectrum, without change of the phase shifts [19-211. More importantly, non-singular phase- 
equivalent potentials can be obtained by a transformation pair which modifies the bound 
spectrum at another energy than the ground-state energy. In this case, the intermediate 
potential obtained after the first factorization is singular, but the singularity disappears in the 
final step [20,22]. This property, which considerably reduces the diffculty of the problem, 
recently allowed us to derive the most general form of real potentials, phase equivalent to 
a given potential [23]. 

In this 
context, phase equivalence is replaced by the conservation of reflection and transmission 
probabilities. This requirement is less restrictive than phase equivalence: it is fulfilled by all 
supersymmetric transformations, while phase equivalence in the radial case is only fulfilled 
by transformation pairs. A systematic study of supersymmetric transformations and of their 
combinations for the line problem is therefore timely. 

Generally speaking, a supersymmetric transformation only requires energies where 
the initial Schrodinger equation is non-oscillatory, i.e. energies where solutions have a 
finite number of nodes (see definition in section XI.6 of [24]). Such a solution is called 
a factorization function, and its energy is called a factorization energy. Consequently, 
supersymmetric transformations can be applied to a very large class of potentials, such 
as confining potentials, oscillating potentials, or discontinuous potentials, since all these 
potentials can lead to non-oscillatory equations. However, in this article, we limit ourselves 
to rather regular potentials vanishing at infinity, namely the Lj potentials (see the definition 
in equation (I)). The asymptotic behaviours of Li-potential solutions, which are the key 
point of supersymmetric transformations, are exactly exponential functions. This simplifies 
the proofs of all the equations that follow. Let us note, however, that a more general theory, 
based on principal and non-principal solutions [24], instead of exponentially decreasing 
and increasing solutions, is possible. Moreover, solutions of oscillatory equations can 
also be used in supersymmetric transformations for studying bound states embedded in the 
continuum [22], but such bound states do not exist for Li potentials. 

The factorization energy of a supersymmetric transformation has to be below the energy 
of the initial ground state in order to maintain the regularity of the potential. However, 
as in the radial case, this condition disappears when two successive transformations are 
applied at the same energy. A systematic study of transformation pairs is thus also useful 
for the line problem. Finally, with all single transformations and with all mnsformation 
pairs, iterations at different factorization energies can be performed in order to modify the 
bound spectrum arbitrarily. In these iterative methods, the type of single transformations 
or of transformation pairs leads to different properties, concerning for instance the potential 
symmeay, the norming constants of the bound states, or the reflection coefficients of the 
scattering states. 

In section 2, we summarize some general characteristics of Li potentials and of their 
solutions. The principle of supersymmetric transformations is described in section 3. Pairs of 
supersymmetric transformations with the same factorization energy are studied in section 4. 
In sections 5 and 6, we iterate at different factorization energies single transformations 
and transformation pairs respectively. Finally, in section 7, we analyse different iterative 
methods, discuss their properties using a unicity theorem, and relate them to existing 
methods. 

In what follows, subscripts refer to different Schrodinger equations, while superscripts 
between brackets refer in different ways to energies or wavenumben. 

J-M Sparenberg and D Baye 

This success leads us to revisit supersymmetry for the line problem. 
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2. General properties of the Schrodinger equation on the line 

As mentioned in the introduction, we consider a real potential V ( x )  in 

This implies that V ( x )  vanishes faster than x-* at infinity, and that the physical or non- 
physical C' solutions @ ( x )  of the Schrodinger equation 

H@'(x) = -7 + V ( X )  rpCE'(x) = E v ( ~ ' ( x )  (2) 

at energy E have real or complex exponential asymptotic behaviours [24]. Moreover. this 
implies that the bound spectrum is a finite set of N energies, El c . . . < EN c 0 [7]. 

Using equation (2) for two arbitrary energies E and E', and for two arbitrary solutions 
p(') and x ( ~ ) ,  a derivation and an integration of W(p('), x ( # ) )  = p(m(dx(E')/dx) - 
(de")/dx)X'E') lead to 

(3) 

When E = E', the Wronskian is constant, and integrating (3) gives the general solution 
of (2), namely 

[: I 

W(vca, x(E')(x) = WO + ( E  - E') p(E)~(E')  dy. l 

When E # E', the Wronskian is not constant and can be expressed in integral form with (3). 
For E = - K ~  < 0 (K > 0). equation (2) has real solutions with real (increasing or 

decreasing) exponential asymptotic behaviours. When E = Ej = -6; belongs to the bound 
spectrum, (2) has a unique normed physical solution @ ) ( x )  with 

This represents a bound state of the system. Other solutions exist for the bound-spectrum 
energies, which do not vanish at infinity and which have no physical meaning, but we shall 
not need them in this article. A bound state is characterized by its norming constant 

(6) cU) = X++W lim exp(Kjx)I@(x)I 

and the wavefunction has j - 1 nodes at finite distance. 

solutions: Iej? regular solutions I (E) (x ) ,  which satisfy 
For other negative energies, equation (2) has different types of non-normalizable 

right regular solutions r(')(x), which satisfy 

and non-regular solutions nIE)(x), which satisfy 

Actually, I -  and r-solutions are defined up to a multiplicative constant, while n-solutions 
depend on hvo parameters. In this article, these two parameters are chosen as a 'shape 
parameter', which modifies the solution shape, and as a multiplicative constant. When E 
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belongs to ] E j - ]  E l [ ,  I -  and r-solutions have j - 1 nodes, while n-solutions have j or j - 1 
nodes, following the shape-parameter value. Finally, when E is below the ground state, E- 
and r-solutions have no node, while n-solutions are nodeless or have a single node. 

For E = kZ > 0 (k > 0). equation (2) has a unique oscillating complex solution 
@ ( k ) ( x )  with the asymptotic behaviours 

J-M Sparenberg and D Baye 

lim +( ' ) (X I  = exp (ikx) + R") exp (-ikx) (10) 
z-t-m 

lim +")(I) = To) exp (ikx). 
x++m 

The complex reflection and transmission coefficients R") and TB) provide the reflection 
and transmission probabilities lR(k)lz and IT(')l*, respectively. 

Deift and Trubowitz 171 have proved that a potential V E Li is determined by its 
reflection coefficient R(k)  (for all positive energies), its bound-state energies E l , .  . . , E N ,  
and their norming constanb C(", . . . , C"'. This implies that the transmission coefficient 
TQ) must also be defined by these elements. In fact, one has (p 154 of [7]) 

where R(-') = R(k)*. When V is a reflectionless potential, TG) reduces to the final product. 

3. Single supersymmetric transformations 

Starting from Hamiltonian HO (i.e. from potential VO), a new Hamiltonian HI (i.e. a 
new potential VI) is conshucted using a single supersymmetric transformation 121. The 
Hamiltonian HO is factorized into 

ff0 = A; A; + E (13) 
where E = -E' (E > 0) is the negative factorization energy. The operators A t  are mutually 
adjoint and read 

where &' is any real solution of the initial Schrodinger equation at energy E. These 
operators only depend on one arbitrary parameter, since a multiplicative constant for uiE' 
does not modify them. The second term of A t  appearing in (14) is the most general form 
agreeing with (13). 

The supersymmetric partner of Hc,, 
H] = AOA; + E (15) 

corresponds to a new real potential 

d2 (0 VI = VO - 2- In tuo I. dx2 
In what follows, the supersymmetric transformation between Ha and HI will be referred 

to as TiE), where the subscript provides the type of factorization function, and the superscript 
refers to the factorization energy. Where no confusion is possible, the superscript will be 
omitted, both for the factorization function and for the supersymmetric transformation. 
The four types of solutions at negative energy correspond to four types of supersymmetric 
msformations: Tq, 3, T,,  and T.. 
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Applying A, to the initial equation shows that the solutions of the new equation at 
energy E can be expressed as 

(0, = A -  0 Po ( E )  - - W(po , uo E )  ) /Uo ( E )  . ($7) 
When E # E, two linearly independent solutions of the initial equation lead to two 

linearly independent solutions of the new one. Moreover, the supersymmetric transformation 
conserves the solution types, as can be seen by examining the asymptotic behaviours of (17). 
From this it follows that the spectra of Ho and HI are identical, except possibly for E. 
However, when pr) and ‘piE) are bound states (E = Ej), the normalization of @:’ imposes 

(18) 

On the other hand, when (p?’ and ‘p iE)  are scattering states (E = k2), the required asymptotic 
behaviour (10) for tG.p’ at --w imposes 

tG.ik’ = i(k + iG)-’A;tG.$’ (19) 

(20) ( k )  - i(k - ic)-IA- @, - 0 % 
for 00 singular at -m. 

When E = E, the Wronskian is constant and (17) only gives one solution of the new 
equation, proportional to U;’. Other solutions of the new equation at energy E are found 
using (4). For instance, for uo = tG.f), where E belongs to the spectrum of Ha, one bas a 
solution 

@ y ) = I E j - E I -  1 / 2 ~ -  o + o .  ( j )  

for uo regular at -CO, or 
(4 

(21) (a - I  nit’= ( t ~ . ~  
and a solution 

l:” = niE) S_k(niE))-2 dy 

which show that E does no longer belong to the bound spectrum of HI: T+ removes E 
from the bound spectrum. Actually, the nature of E for the new equation is conditioned by 
the type of (IO. 

Things are more complicated in the case of T,, which adds a bound skate to the bound 
spectrum: the new bound state has to be normalized. As was seen in section 2, n-solutions 
depend on a shape parameter. They can be expressed in various ways, and some of them 
allow us to calculate the new bound-state norm easily. For instance, for 

where the shape parameter (Y is strictly positive, the normalized wavefunction is given by 

(24) 
In the same way, 0, I -  and 
r-solutions are simply exponential functions, so that VI is also 0. 

Table 1 summarizes the properties of the four supersymmetric transformations. They 
lead to the following comments: (i) the theorem (12) is satisfied by RP’ and Ty); (ii) 
reflection and transmission probabilities are not affected by supersymmetric transformations; 

( E )  - 1/2 (0 el --(y / n o  . 
and T, do not modify the bound spectrum; when V, 
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‘hble 1. Single supenymeuic transformations. 

Type Spectrum modification RU’,  T (k )  Norming umstvlts 

T, Suppression of & 

(Ei # E )  U) - - ic ( k )  -- TI k + i c T o  

(iii) in particular, a reflectionless potential remains reflectionless; (iv) for T., the norming 
constant C;&) can be arbitrarily chosen, for instance by fixing LY in (23). 

Let us finally discuss the problem of singularities in the potential due to supersymmetric 
transformations. The modification term in (16) vanishes faster than x - ~  at infinity. Where 
uo has nodes, it has non-integrable singularities. This can be seen using a series expansion. 
Hence, when VO is LI, VI is L; if the factorization function 00 has no node, i.e. only when 
E < E l .  In other cases, the supersymmetric transformation gives rise to a singular potential, 
and equation (17) shows that its solutions have singularities at the same locations. Actually, 
equations (17) to (24) remain valid between 00 nodes, since they are deduced from the local 
relation (17). Attention has only to be paid when an integral form is used, as for instance 
in (22). In these particular cases, the integral form is valid as long as the integral is well 
defined (which is hue in (22), even if @AE) has nodes). 

Conversely, a supersymmetric transformation can remove potential singularities when 
VO itself results from a supersymmetric transformation with factorization energy E larger 
than El.  In what follows, we limit ourselves to L: potentials, but we sometimes use this 
kind of singular potentials in intermediate steps (an example appears in appendix A). 

4. Pairs of supersymmetric transformations 

Single supersymmetric transformations give rise to many different potentials. However, 
singularities occurring as soon as E =- E ,  apparently reduce the number of cases of 
physical interest. It has been recently shown, in the radial case 120-221, that some pairs 
of supersymmelric transformations, at the same factorization energy E ,  can lead to regular 
potentials V.,  even when E > Et.  In this case, intermediate potentials V, are singular at a 
finite number of points, and have no physical significance. 

The same principle can be applied on the line, where the number of interesting cases is 
larger: only three pairs are useful in the radial case, whereas seven pairs occur here. The 
potential VI, resulting from the pair (’TJ‘), ‘T:‘]), i.e. from successive applications of Tf) 
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p = .  

and T:&' on VO, using (16) reads 

0 

- 1  (T** 6 )  
(TI, E ) ,  (Tr9 Tr). e+. 4) 

Ly (4, Tn) (29) 

-ff (T,, Td 

(4, T) . L y / U  - 01) 

Four types of single transformations lead to sixteen possible pairs. However, spectrum 
modifications make some pairs impossible: it is impossible to suppress or to add a bound 
state twice, so that (T+, T+) and (T,, T.) do not exist. In the same way, ( E ,  T*), (T,, 4). 
(Tn, 4). and (T,, T,) do not exist, since E cannot be simultaneously physical and non- 
physical in the same spectrum. On the other hand, equation (U) shows that the pair of 
transformations does not modify the potential when 51 is proportional to U;', as in (T,, T*), 

Of the sixteen pairs, six are impossible and three are trivial. The seven remaining pairs 
are all used in what follows. The potential Vz and its solutions can be expressed in terms of 
VO and its solutions. Solutions pz are expressed in terms of solutions 91 in the differential 
form (17). Solutions (01 are expressed in terms of solutions in integral form, either 
deduced from (17H20) by using equation (3) for E # E, or deduced from (4) as in (22) 
for E = E. The validity of this integral form between uo nodes has to be verified by direct 
calculation. 

( Z j g  Tr) and (Tr ,  T I ) .  

Let us introduce the integrals 

where at least one energy is negative, and where the integration limit is chosen so that the 
integral converges. This is possible in all cases that are useful in what follows. When 
the two solutions are physical, both integration limits are allowed, in this article, we 
arbitrarily choose -CO. When E # E', these integrals are proportional to the corresponding 
Wronskians, as can be seen on (3) with xg = Ttm and WO = 0. However, they are also 
defined when E = E'. 

These @functions lead to unified equations for the seven pairs (we treat (Zj, T.) in 
detail in appendix A; other cases are similar): 

(27) 
d2 

dx2 
Vl= VO - 2- In I@ + @(uo, U O ) ~  

where 
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The normalization constant NCE) equals 1, except in the following cases: for a bound 
state of V2 at energy E, where 

(30) NI&) = a-'/2, 

For a scattering state with uo and TI regular at -CO, where 

N") = (k - ic)/(k + ic) (31) 

or with 00 and tl singular at -CO, where 

N'" = (k + ic)/(k - ic). (32) 

Let us note that the @-functions used in (27) and (28) are well defined in all useful cases, 
Moreover, Vz is LI and viE) is C'. The seven pairs of supersymmehic transformations 
lead thus to physical potentials and to analytical expressions of their solutions, for any 
factorization energy E c 0. This striking fact can also be directly established by 
replacing (27) and (28) in H 2 q r '  = E#). 

Table 2. Pain of supersymmetric Uaasrarmations. 

Type Speclrum modification R*'. TCk) Norming constants 

U) - ( - ")' R;k) 
R2 - k+ir Suppression of & 

+k) - (XI 
- k + i f T a  

Specmm modifications, reflection and transmission coefficients, and norming constants, 
are gathered in table 2 for each pair of transformations. They can be obtained either from 
table I ,  or by direct calculation with (28). 
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5. Iteration of single transformations 

Let us consider a sequence of M single supersymmetric transformations, with distinct 
factorization energies &I, . . . , &M, and with fatorization functions U,,, = U,?+’), such that 
the potential remains LI at each step. Except for &I < El, this condition depends on 
the sequence of transformations and cannot be expressed simply. Successive potentials are 
linked together by single transformations (equation (16)) as 

d2 
dxZ 

Vm+l = V,,, - 2- In lu,l (33) 

with m = 0,. . . , M - 1, and U,,, nodeless. 

equations 
On the other hand, a unified equation gives the link between solutions of two successive 

(34) 

When E # When E = &,+I, 

p:;;’) is of type U;’, and the type of p,!?+’) must be different from the type of om 
(see section 3). The normalization coefficient NE!] equals 1, except in the following cases: 
when E # &,,,+I corresponds to a bound state, A$;, = IEj -&m+II-l/z (see equation (18)); 
when E = &,,,+I is a bound energy of Vm+l. the Wronskian W of (34) is constant and 

according to whether um is regular or singular at -ca (see equations (19) and (20)). 
Equations (33) and (34) are particularly useful, since they allow us to prove (see 

appendix B) that the final potential V, and its solutions can be expressed in terms o f  
M and (M + 1)-dimensional Wronskians involving solutions of the initial equation only as 

p:Jl = Ns)l U’(&?, Um)/um. 

PA,’ and in (34) are of the same type. 

&4E”.+d = l , ( n ~ l ~ ) - l l , - l / z w - l .  , when E is a scattering state, &4til = i/(k zk +,,,+I) 
m+l 

(35) V, = VO - 2- d2 In \w(u0 (6, ) , . . . , U,~‘”’)I 
d x 2  

where the Wronskian W( fl, . . . , fM) is the determinant of an M dimensional matrix whose 
elements read WP.Y = d” fq/dxP for p = 0, . . . , M - 1 and q = 1 , .  . . , M, and U?) is 
of the same type as U,,, . 

These equations. which generalize the results of [7], call for several remarks: 
(i) If VO is even, other potentials V,+, are also even when factorization functions are 

chosen symmetric; this is only possible with J.- and n-functions, and requires particular 
values of the shape parameters in the n-functions. This ability of conserving symmetry in 
a controllable way will not occur in the other methods discussed below. 

(ii) Supersymmetric transformations modify the number of nodes of solutions. Let us 
consider an example: (Tp’, q(‘)) with El < E < E*. which removes the ground state at 
energy El and then modifies the potential without modifying its spectrum. The solutions 
@/) and I?’ have no node, so that VI and V, are regular. On the other hand, 1:’ has one 
node at finite distance, as seen in section 2. The first transformation thus removes one node 
from this function. Consequently, it  is not surprising that functions appearing in Wronskians 
of (35) and (36) have nodes. This is particularly dramatic with T,, transformations, where 
the shape parameter determines the number of nodes of the n-solution, and has to be chosen 
so that the potential remains regular. An important example of this phenomenon is given 
in subsection 7.4. 
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(iii) The result is unaffected by any permutation of supersymmetric transformations, 
since this simply corresponds to permutations of columns in determinants, and signs of 
determinants have no consequence. This shows that the potential can have singularities 
at intermediate sleps, but recover regularity after the last transformation. A sufficient 
condition for the final potential to be regular is that there exists an order of application 
of the transformations for which the potential is regular at each step, as assumed in this 
section. 

(iv) Following remark 2 in section 3 of [7], an alternative form of Wronskians of 
solutions exists. It only involves solutions and their first derivatives, and can be obtained 
using the initial equation (2). 

6. Iteration of transformation pairs 

Let us now consider a sequence of M supersymmetric transformation pairs, with distinct 
factorization energies &I. . . . . &M, and with first factorization functions UU, = 05'). There 
is no particular condition on these energies, unlike for iterations of single transformations, 
as seen in section 4. The potential remains Lf at each step. Potentials and their solutions 
are linked together by equations (27)-(32) 

(37) 
dZ 
dx* V Z ( ~ + I )  = VU, - 2- In lrBm+i + @(oz,,,, on)\ 

for m = 0. . . . , M - 1. The subscripts of N ( € )  and @ refer to the factorization energy &m+l. 
As in the case of single transformations, these equations allow us to express (see 

appendix C) the final potential VU, and its solutions in terms of the initial equation solutions 
only, as 

d2 
dxZ 

= VO - 2- In Idet&/ (39) 

In these expressions, Xo is an M-dimensional matrix, whose elements read, for p. q = 
I . .  . . , M, 

(41) (E,) (E,)) x y  = @& + @(U0 , Do 
and Yo(@) is an (M + 1)-dimensional matrix, whose elements read 

(P. 4 > 0) 

( p  = q = 0). 

In these equations, @-functions are defined in (26); oAL+') is of the same type as 0%; ,3 and 
coefficients are given by equations (29) and (30)-(32), respectively. When E does not 

belong to the set of factorization energies, & and #) in (40) are of the same type and 
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cannot be of type n. When E = &,,,+l, equation (40) only gives the physical wavefundon 
t);?), and qp) has to be chosen of the same type as U&. In this particular case, 
det Yo(&"')) can be reduced to an M-dimensional determinant by subtracting row m + I 
from the similar row 0. 

As for single transformations (remark (iii) of section 5). determinants appearing in (39) 
and (40) simply express the commutativity of transformation pairs. On the other hand, 
transformation pairs behave differently from single transformations as far as symmetry is 
concerned they do not conserve it since they contain or T, transformations (this is not the 
case for (T$, T"), but this pair has no effect on the potential when it conserves symmetry). 

7. Applications and comparisons with existing works 

7.1. The rejZection-coeficient mefhad 

Without modifying the reflection coefficient R(", (4, T,) and (?j, T.) respectively suppress 
and add a bound state, while (i"$, Tm) modifies its norming constant. This can he seen in 
table 2. Iterating these three pairs constitutes the reflection-coefficient method (R-method), 
which leads to arbitrary modifications of the bound spectrum and of norming constants, 
without modification of the reflection coefficient at any energy. According to the unicity 
theorem of section 2, the R-method thus allows us to construct all L:  potentials having the 
same reflection coefficient as a given Lf  potentid. Let us note that the control of norming 
constants with this method is not simple: any spectrum modification changes all norming 
constants. Restoring them then requires a (T+, T") transformation pair for each bound state. 
Actually, this pair has the advantage of modifying arbitrarily one norming constant without 
modifying the others. 

Abraham and Moses [I I] present an algorithmic method, based on the Gel'fand-Levitan 
equation, which allows the same modifications of a given potential as the R-method. The 
link between both methods is proved for ground-state deletion, addition and renormalization 
on the line in [Z], and for ground-state deletion in the radial problem in 1261. 

Establishing the exact equivalence between the Abraham-Moses and R-methods closely 
follows the analogous discussion of [20,23] (see below), and we shall not reproduce it here. 
Let us simply mention that the R-method gives explicit solutions of the Abraham-Moses 
equation, instead of algorithmic solutions. Pursey and Weber [27] find similar solutions of 
this equation in the radial case. 

7.2. The norming-constant method 

Without modifying the norming constants of other bound states, (T9, E )  and (Tr, T,) 
respectively suppresses and adds a bound state, while (T9, T.) modifies its normingconstant 
This can be seen in table 2. Iterating these three pairs constitutes the norming-constant 
method (C-method), which leads to arbitrary modifications of the bound spectrum and of 
some norming constants, without modifying the other norming constants. It is particularly 
useful in the radial problem 1231, where it  presents the additional property of conserving 
phase shifts. Compared with the R-method, the C-method is useful when one needs to 
control the norming constants. 

On the other hand, the C-method modifies the phase of the reflection coefficient hut does 
not modify its modulus, as can be seen in section 3. The unicity theorem of section 2 does 
not warrant that the C-method provides all potentials sharing specific propeaies, except 
in the case of reflectionless potentials: in fact, the C-method allows the construction of 
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all LI reflectionless potentials, starting from one of them, with a total control of norming 
constants. 

Let us note that the C- and R-methods are formally very close to one another (the roles 
of +co and -CO are just inverted). In spite of this similarity, they have quite different 
properties, because of the asymmetry between +CO and -co, introduced by the basic 
definitions (6), (IO), and (11) of the line problem. A formal link between the Abraham- 
Moses and C-methods is given for the ground state in 1161 and for arbitrary modifications 
of the bound spectrum in [20,23], in the case of the radial problem. 

In [lo], Pursey proposes a method based on the Marchenko equation (instead of 
the Gel'fand-Levitan equation used by Abraham and Moses), which allows the same 
modifications of a given potential as the C-method. The link between the Pursey and 
C-methods is made in [26] for a ground-state deletion in the radial case. A general proof 
of equivalence is very close to that of [20,23]. We shall not reproduce it here. Let us only 
mention. as for the R-method, that the C-method leads to general analytical solutions of the 
Pursey equation, and that Pursey and Weber also find these solutions in I271 for the radial 
case. 
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7.3. Removing M bound states of a given pofential 

Let Vo have at least M bound states. Three main methods can be used m remove bound 
states: 

(i) TP)- . . . , Tp', where E,,, = E,. The final potential is regular if and only if the 
removed bound states are the lowest ones. The order of application (E1 to EM) is only 
important if one wants the potential to remain regular at each step. This method maintains 
a possible otential symmetry and is used by Deift and Trubowitz [7]. 

This method conserves the reflection coefficient (R-method), and is equivalent to that of 
Abraham and Moses [l I]. 

(iii) (T,"), 'f')), . . . , (Ti'"", q('M)), where the E,,, belong to the initial bound spectrum. 
This method conserves the norming constants of the remaining bound states (C-method), 
and is equivalent to that of Pursey [IO]. 

For (ii) and (iii), the removed bound states cannot be the lowest ones and a permutation 
of energies does not make the potential singular at intermediate steps, unlike for (i). For 
each method a direct analytical equation exists (particular cases of sections 5 and 6). An 
analytical equation also exists when (ii) and (iii) are mixed (section 6). In contrast, when 
(i)-(iii) are mixed, no simple analytical equation is available. 

(ii) (T;), P T>&l)), , . . , (TicM), T>")), where the E,,, belong to the initial bound spechum. 

7.4. Adding M bound states to a given potential 

As for the preceeding case, three main methods exist: 
Here, the validity condition on energies can be expressed as 

E, > €1 > . . . > 6. Functions n;'"') appearing in Wronskians of (35) and (36) must 
be nodeless if m is odd, and have one node if m is even. This is a consequence of remark 
(ii) of section 5. This method is used in [3.4,7]. 

(ii) (?@'), Tj'I)), . . . , (T,"M', TicM)),  where the Em do not belong to the initial bound 
spectrum (R-method). 

(iii) (T?I), Tic1)), . . . , (TtcM), T,'&)), where the E, do not belong to the initial bound 
spectrum (C-method). 

For methods (ii) and (iii), and for a mixing of all methods, the same comments as in 

(i) Ti&), . . . , Ti'u). 
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subsection 7.3 apply. In particular, for methods (ii) and (iii), the added bound states do not 
have to be below the initial ground state. In the same way, comments concerning the order 
of application and singularities are similar to those of subsection 7.3. 

Method (i) has been used quite often in previous works in the case V, = 0 [3,4,7]. 
The same result can be obtained by other methods 112,131, and linked with vertex 
operators [6,14]. This is found in a study of solitons with the Korteweg-de Vries equation, 
whose solutions are reflectionless potentials. In this context, the number of bound states 
and their norming constants have a direct physical meaning [14] (see also [26]). 

7.5. Most general supersymmetric transformation of a given potential 

An iteration of Tr or Zj transformations at a given energy gives rise to a countable infinity 
of different isospectral potentials (the fact that R*) changes at each step ensures that these 
potentials are different). Non-physical negative energies form a continuum, so that the 
different potentials obtained from supersymmetry are not countable. In 'fact, the most 
general transformation of a given potential can be performed in three steps: 

(i) deletion of all bound states of the initial potential, using method (i) of subsection 7.3; 
(ii) arbitrary number of T, or Zj transformations, for any negative energy (not only for 

(iii) introduction of bound states of the final spectrum, using method (i) of subsection 7.4. 
In some cases, this method is a particular case of iterative methods of sections 5 and 6, 

and a compact analytical result exists. For instance, the application of (T,,T,) at any 
non-physical energy does not require deletion and reintroduction of all bound states. 

removed energies or for energies of final bound states); 

7.6. Isospectral potentials 

The general process explained in subsection 7.5 can be specialized in order to construct 
isospectral potentials: the bound states introduced at step (iii) must have the same energies 
as the initial bound states removed at step (i). The class of isospectral potentials obtained 
from supersymmetry can be compared with existing resuIts. 

Kemg eb al [5] construct an M-parameter family of isospectral potentials with M bound 
states by first removing the M bound states with successive Tq, and then reintroducing 
them with successive T,. This is equivalent to M successive (Tq, T,,) pairs, each of them 
introducing an arbitrary shape parameter, and performed in arbitrary order. 

Khare and Sukhatme [9]  generalize this method by considering three ways of deleting 
the ground state and three ways of reinserting it. They note that, among the nine possible 
resulting transformations, only five are distinct. In the present notation, the three suppression 
methods correspond to T,, (T*, T,), (T*, r),  while the three addition methods correspond 
to .T.. (T,, T,,), (Zj, T.). Taking into account that (T,, Zj) and (Zj, T,) are trivial pairs 
(see section 4), one directly obtains five ways of renormalking the ground state, namely 
(Tq, TI. (Tp, Zj, TI, (Tp, T,, T A  (Ty. T,*, T )  and (Tq, T:. T,). These authors show that 
iterating these methods leads to a countable infinity of isospectral-potential families. In the 
present notation, this iteration corresponds to (T$,  T,, . . . I T,, T,) or (Tq, Zj,. . . , i'j, T,) at 
each energy of the bound spectrum, since (G, T+) is trivial. 

The number of isospectral potentials obtained from general supersymmetric 
transformations is larger than the result of 191, since T, and Zj transformations can be 
used for a11 negative energies. Moreover, in some cases compact analytical equations exist. 
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8. Conclusion 

On the line as in the radial case, supersymmetry is a powerful way of analytically 
constructing new potentials and their solutions, starting from a given potential and its 
solutions. The case of L:  potentials is studied here, in order to simplify proofs and to 
use a unicity theorem. A generalization of supersymmetry to more general potentials is 
possible. 

The properties of all single transformations and of all transformation pairs are 
established. The condition on the factorization energy disappears when a pair is used. 
The results, summarized in tables 1 and 2, show that supersymmetry is not able to modify 
the reflection and transmission probabilities, but can modify the hound spectrum, norming 
constants, and the phases of the reflection and transmission coefficients. 

General iterative methods of single transformations and of transformation pairs are 
explored. Among them, a method based on single transformations (section 5) can maintain 
an even symmetry of the potential; the R-method (subsection 7.1) conserves the reflection 
coefficient at all energies and gives rise to U N  potentials having the same Itck) as a 
given potential; the C-method (subsection 7.2) conserves norming constants and allows 
the construction of all rq'7ectwnless potentials, with a total control of norming constants. 

Examining supersymmetric transformations systematically allows us to clarify the 
relations between existing methods, and gives rise to new ones. In particular, the number of 
different potentials (subsection 7.5) and of different isospectral potentials (subsection 7.6) 
obtained by supersymmetry is larger than any previous result. This could be particularly 
interesting in several physical problems linked with the inverse problem 1151. 
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Appendix A 

In this appendix, we establish in detail equations (27H32) for (",(E', T f ) ) ,  with E < 0. 
Solutions of H, can be expressed in terms of those of Ho in integral form. For E # E ,  
equations (17t(19), (3) and (26) lead to 

(AI) 1 y  = @(lo ( E ) ,  l f ) ) , l f )  

r y )  = O(rF), p ) / p  ('42) 

r l l  ( j )  - - IE ,  - ,p~(#), p)/p (A31 

(A41 I@) = i(k - ic)~(q,, lk) ,lo 6) )/I;". 

For E = E ,  equations (17) and (4), with xo = -CO and WO = I ,  give 

(As) rl - (lo ) 

1;" = O ( p ,  I ; ' ) ) / / p .  (A6) 
Multiplicative constants are introduced in order to simplify equations (Al)-(A3) and (A5). 
Integrals appearing in these expressions are well defined, even when 1;') has nodes. 

m - E) -1  

and 
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Between 1;') nodes, these functions are solutions of the SchrMinger equation, with 
potential 

d2 (Cl VI = VO - 2- In Ilo I. 
dr2 

In the case of (A6), this can be shown by a direct calculation. At 1;') nodes, both the 
potential and its solutions are singular. 

The second transformation requires choosing ny). With (A5). equation (23) pr0vide.s 

where U > 0. Equation (25) then leads to 

which is identical to (27) for (q, Tn), and has no singularity. On the other hand, 
equations (17), (IS), and (20) kept in differential form for the second transformation, 
combined with (AlHA4). lead to (28)432) for E # E. Finally, equations (24) and (AS) 
give 

which is the extended form of (28)-(32) for E = &. The solutions of Vz' are correct between 

the singularities of the intermediate potential VI and of its solutions are removed by the 
second transformation. 

lo ( E )  nodes, but they are also continuous, so that they are correct everywhere. In particular, 

Appendix B 

Here we deduce equations (35) and (36) from equations (33) and (34). Eguations (33) 
and (34) for na = 0 are respectively identical to (35) and (36) for M = 1. We now prove 
that if (35) and (36) are valid for some value M - 1, they are still valid for the next value 
M. 

Let us apply to potential VI a set of modifications at the M - 1 energies Ez,  . . . , &M. 
Then, equation (35) implies that V, reads 

(B1) v,=v~ - 2 - l n l ~ ( u ,  dZ (61) ,...+ ul(tlb))l 
d x 2  

or 

(B2) dZ (&) (EM)),  V, = VO - 2- In lu0W(ol , . . . , ul dx2 

with 00 E u,'"I'. For m = 0, equation (34) can be written as 

so that 
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The expressions A[(uo) are complicated, they contain 00 and its p first derivatives only, 
with A: = A!, = 0 by convention. 

The Wronskian in (B2) can be transformed by multiplications and subtractions of its 
rows into 

.I-M Spawnberg and D Baye 

with p = 0,. . . , M - 2 and q = 2, .  . . , M. The normalization of factorization functions 
has no importance, since a multiplicative constant does not modify the effect of Ihe 
transformation on the potential. Consequently, can be taken to be equal to -1. 
Hence, equations (B4) and (B5) lead to 

which, using a determinantal property derived in the appendix of [19], implies 

(B7) W(U/h), . . . , u p ) )  = "(Uo (4 ) , I . .  I uE"')/uo. 

Combining equations (B7) and (B2) proves the validity of (35). 
The proof of (36) follows the same pattern: the validity of (36) for M - 1 implies 

The Wronskian elements can be transformed as in (B5) and (B6) into 

(B9) ( E )  (Ed ( Z M ) )  = JqE) w (CO, ( E )  , U, (6) , . . . , U, ( Z M )  )/U& WP,  * U ]  , . . . , U ,  

Combining equations (B7). (B8) and (B9) proves equation (36). 

Appendix C 

Here we deduce equations (39)-(42) from (37) and (38). Equations (37) and (38) form = 0 
are identical to (39) and (40) for M = 1. We now prove that if (39x42) are valid for some 
value M - 1, they are still valid for the next value M. 

Let us apply to potential V, a set of modifications at the M - 1 energies &, . . . ,EM. 
Then, equations (39) and (41) imply 

where X2 is a matrix of order M - 1, whose elements for p, q = 2, . . . , M read 
(E,) (4) (C2) x,pq = B,6,, + *(UZ , U2 ). 

Equation (38). written for m = 0, allows us to calculate, using (26) 

where (p:"' and xlE" are factorization functions. The determinant property derived in the 
appendix of [19] implies 

detX2 = [,% + @(uo, u0)l-l det& (C4) 
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where & is defined in (41). Equation (C4), combined with (Cl) and (37) form = 0, proves 
equation (39). 

The proof of (40) and (42) follows the same pattern: their validity for M - 1 implies 
that 

where Y z ( ~ : ~ ' )  is a matrix of order M, whose elements are defined as in (42). with subscript 
0 replaced by 2, and for p .  q = 0,2, . . . , M. Equations (C2), (C3) and (38) imply that 

(C6) 
for p = 2,. . . , M and q = 0.2,. . . , M. An equation analogous to (C3) with a suitable 
normalization, equations (CZ) and (38) imply that 

p ( p 2  ( E )  ) - - yIJ4(p(E) ,, 1 - Y,P,'((o, (E) ) y ~ , ~ ( p ~ ) ) / r ~ , ' ( v ~ E ) )  

for q = 0,2,. . . , M. Using the same determinant property as above, equations (C6) 
and (C7) lead to 

Combining equations (GI), (C5) and (C8) proves equations (40) and (42). 
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