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Abstract. A systematic study of supersymmetric (or Darboux) factorizations on the line is
performed. All possible pairs of supersymmmetric transformations with the same factorization
energy are reviewed; for such pairs, there is no condition on this energy. Iterations of single
transformations and of pairs both allow arbitrary modifications of the bound spectram. Different
iterative methods lead to compact analytical equations depending on the initial potential and
its solutions. Iterations of single transformations are able to transformt an even potential into
an even potentigl. Particular cases of a method based on iteration of pairs conserve either the
reflection coefficient at all energies or the norming constants of bound states, These results are
compared with previous methods established in other contexts. The most general supersymmetric
teansformation of a given potential is finally described, both with and without modifications of
the bound spectrum.

1. Introduction

In one-dimensional problems, supersymrnetric quantum mechanics [1,2] offers a simple
way of constructing new potentials and their sojutions in terms of a2 known potential and its
solutions. Usually, some properties of the initial potential are modified by the transformation
while other properties remain unchanged. For instance, when the new potentials are not
singular, their bound spectra differ at most by the ground state from the initial spectrum.

For the line problem, many methods attempt to modify some properties of a potential,
such as its spectrum, the norming constants of the bound states, or the asymptotic behaviour
of the scattering states. Some of them [3—6] are directly based on supersymmetry. A
number of methods [7-9] are based on the Darboux factorization, which is equivalent to a
supersymmetric transformation. Other methods [6, 9-14] are based on general techniques of
the inverse problem (see references in [15]). Although partial comparisons between these
methods appear in these works, no theory brings all the aspects of the different methods
together. The aim of the present paper is to establish a general framework, based on
supersymmetry, which contains previous works as particular cases.

This theory is inspired by recent progress in the radiai or half-line problem. About
ten years ago, Sukumar [16] derived the possible supersymmetric transformations for this
case, together with the corresponding modifications of the phase shifts. Applications
often require potentials which share the same phase shifts at all energies, i.e. phase-
equivalent potentials, but which have different bound spectra [17]. Such potentials, with an
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addition or a suppression of the ground state, can be obtained by pairs of supersymmetric
transformations [17, 18). Iterations of such pairs allow arbitrary modifications of the bound
spectrum, without change of the phase shifts [19-21]. More importantly, non-singular phase-
equivalent potentials can be obtained by a transformation pair which medifies the bound
spectrum at another energy than the ground-siate energy. In this case, the intermediate
potential obtained after the first factorization is singular, but the singularity disappears in the
final step [20,22]. This property, which considerably reduces the difficulty of the problem,
recently allowed us to derive the most general form of real potentials, phase equivalent to
a given potential [23].

This success leads us to revisit supersymmetry for the line problem. In this
context, phase equivalence is replaced by the conservation of reflection and transmission
probabilities. This requirement is less restrictive than phase equivalence: it is fulfilled by all
supersymmetric transformations, while phase equivalence in the radial case is only fulfilled
by transformation pairs. A sysiematic study of supersymmetric transformations and of their
combinations for the line problem is therefore timely.

Generally speaking, a supersymmetric transformation only requires energies where
the initial Schrddinger equation is non-oscillatory, i.e. energies where solutions have a
finite number of nodes (see definition in section X1.6 of [24]). Such a solution is called
a factorization function, and its energy is called a factorization energy. Consequently,
supersymmetric transformations can be applied fo a very large class of potentials, such
as confining potentials, oscillating potentials, or discontinucus potentials, since all these
potentials can lead to non-oscillatory equations. However, in this article, we limit ourselves
to rather regular potentials vanishing at infinity, namely the L} potentials (see the definition
in equation (1)). The asymptotic behaviours of L}-potential solutions, which are the key
peint of supersymmetric transformations, are exactly exponential functions. This simplifies
the proofs of all the equations that follow. Let us note, however, that a more general theory,
based on principal and non-principal solutions {24], instead of exponentially decreasing
and increasing solutions, is possible. Moreover, solutions of oscillatory equations can
also be used in supersymmetric transformations for studying bound states embedded in the
continuum [22], but such bound states do not exist for Li potentials.

The factorization energy of a supersymmetric transformation has to be below the energy
of the initial ground state in order to maintain the regularity of the potential. However,
as in the radial case, this condition disappears when two successive transformations are
applied at the same energy. A systematic study of transformation pairs is thus also useful
for the line problem. Finally, with all single transformations and with all transformation
pairs, iterations at different factorization energies can be performed in order to modify the
bound spectrum arbitrarily. In these iterative methods, the type of single transformations
or of transformation pairs leads to different properties, concerning for instance the potential
symmetry, the norming constanis of the bound states, or the reflection coefficients of the
scattering states.

In section 2, we summarize some general characteristics of L] potentials and of their
solutions. The principle of supersymmetric transformations is described in section 3. Pairs of
supersymmetric transformations with the same factorization energy are studied in section 4.
In sections 5 and 6, we iterate at different factorization energies single transformations
and transformation pairs respectively. Finally, in section 7, we analyse different iterative
methods, discuss their properties using a unicity theorem, and relate them to existing
methods.

In what follows, subscripts refer to different Schrédinger equations, while superscripts
between brackets refer in different ways to energies or wavenumbers.
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2. General propertiies of the Schridinger equation on the line

As mentioned in the introduction, we consider a real potential V{x) in

+o0
L= {V(x) : f IV + Ix) dx < oo]. )

—e0
This implies that V(x) vanishes faster than x~* at infinity, and that the physical or non-
physical C' solutions '®(x)} of the Schrédinger equation

2
Hp®x) = [—% + V(x)] o B = EgBx) @
at energy E have real or complex exponential asymptotic behaviours [24]. Moreover, this
implies that the bound spectrum is a finite set of N energies, E; < --- < Ey < 0[7].
Using equation (2) for two arbitrary energies E and E’, and for two arbitrary solutions
@B and &), a derivation and an integration of W(pE, x&)) = o®E(dx ) /dx) —
{de® fdx) x &7 lead to

X
W(e'™, X)) = Wo+ (E - E') f o'Px " dy. @
X0

When £ = E’, the Wronskian is constant, and integrating (3) gives the general solution
of (2), namely

X
1B = ¥ ) [X(E)(xo)/fp(g)(xo) + Wo f @B dy] : )
Xo
When E £ E’, the Wronskian is not constant and can be expressed in integral form with (3).
For E = —~k? <0 (¢ > 0), equation (2) has real solutions with real (increasing or
decreasing) exponential asymptotic behaviours. When E = E; = ——fcjz belongs to the bound
spectrum, (2) has a unique normed physical solution ¥’ (x) with
lim ¥ 9P(x) o exp(—x;|x}]). 5
X—Eoc

This represents a bound state of the system. Cther solutions exist for the bound-spectrum
energies, which do not vanish at infinity and which have no physical meaning, but we shall
not need them in this article. A bound state is characterized by its norming constant

G = i . )
C¥ = lim exp(xx)[y™ (x) 6
and the wavefunction has j — | nodes at finite distance.

For other negative energies, equation (2) has different types of non-normalizable
solutions: left regular solutions I®(x), which satisfy

: (E)
x};g\wl {x) ocexp (xx) ¢))

right regular solutions r‘&)(x), which satisfy

; (E) —
x-lal-l:ll;loor {(x) o exp (—xx) (8)
and non-regular solutions n'¥)(x), which satisfy
; (E}
lim a® () ocexp (el ©

Actually, I- and r-solutions are defined up to a multiplicative constant, while n-solutions
depend on two parameters. In this article, these two parameters are chosen as a ‘shape
parameter’, which modifies the solution shape, and as 2 multiplicative constant. When E
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belongs to 1E;_;, E;{, I- and r-solutions have j— 1 nodes, while n-solutions have f or j—1
nodes, following the shape-parameter value. Finally, when E is below the ground state, I-
and r-solutions have no node, while n-solutions are nodeless or have a single node.

For E =k > 0 (k > 0), equation (2) has a unique oscillating complex solution
#®(x) with the asymptotic behaviours

fim ¥ (x) = exp (ikx) + R™ exp (—ikx) (10)
lim ¥®(x) = T® exp (ikx). (11)
Xx=-00

The complex reflection and transmission coefficients R* and T%® provide the reflection
and transmission probabilities |R®|? and |T®)?, respectively.
Deift and Trubowitz [7] have proved that a potential V € L] is determined by its

reflection coefficient R% (for ali positive energies), its bound-state energies Ey,..., Ey,
and their norming constants C, ..., C™), This implies that the transmission coefficient
T® must also be defined by these elements, In fact, one has (p 154 of [7])
1 [ In(l—[R@2) N
) = —_ —_—d k+ ix;)/ (k — ik; 12

where R = R®*_ When V is a reflectionless potential, T™® reduces to the final product.

3. Single supersymmetric transformations

Starting from Hamiltonian Hy (i.e. from potential Vy), a new Hamiltonian H, (ie. a
new potential V}) is constructed using a single supersymmetric wransformation [2]). The
Hamiltonian Hy is factorized into

Hy= A} Ay + & (13)

where £ = —e? (¢ > ) is the negative factorization energy. The operators Ag: are mutually
adjoint and read

AE = :!:de- + % InJo i (14)
where aém is any real solution of the initial Schrodinger equation at energy £. These
operators only depend on one arbitrary parameter, since a multiplicative constant for aéa)
does not modify them, The second term of Ao* appearing in (14) is the most general form
agreeing with (13).

The supersymmetric partner of Hy,

H =A;A; + € (15)

corresponds to a2 new real potential

@ o ®
Vi= VO - ZE—X—: In fO'o ' (16)

In what follows, the supersymmetric transformation between Hp and H, will be referred
to as 7€), where the subscript provides the type of factorization function, and the superscript
refers to the factorization energy. Where no confusion is possible, the superscript will be
omitted, both for the factorization function and for the supersymmetric transformation.
The four types of solutions at negative energy correspond to four types of supersymmetric
ransformations: Ty, 71, T,, and T,.
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Applying Aj to the initial equation shows that the solutions of the new equation at
energy E can be expressed as
- E £ £
o = 45087 = Wy 05 /05" an
When E # £, two linearly independent solutions of the initial equation lead to two
linearly independent solutions of the new one. Moreover, the supersymenetric transformation

conserves the solution types, as can be seen by examining the asymptotic behaviours of (17).
From this it follows that the spectra of Hp and H, are identical, except possibly for £,

However, when gaém and gofE) are bound states { £ = E;), the normalization of xlr,m imposes
D =B — e agyg”, (18)

On the other hand, when qp[()E) and ng) are scattering states (E = k), the required asymptotic

behaviour (10) for ¥ at —co imposes

O =i+ i)y agyd® (19)
for op regular at —o0, or
v® =itk —ie) ' A5y Y (20)

for op singular at —oo.

When E = £, the Wronskian is constant and (17) only gives one solution of the new
equation, proportional to 0'0". Other solutions of the new equation at energy &£ are found
using (4). For instance, for oo = és}, where £ belongs to the spectrum of Hg, one has a
solution

ngé‘) —_ (wéé'))-l (21)

and a solution
X
£ £ £y —
z§>=n§>f ()2 dy
—-cd

= (g f W& ay (22)

which show that £ does no longer belong to the bound spectrum of Hy: Ty removes £
from the bound spectrum. Actually, the nature of £ for the new equation is conditioned by
the type of op.

Things are more complicated in the case of 7, which adds a bound state to the bound
spectrum: the new bound state has to be normalized. As was seen in section 2, n-solutions
depend on a shape parameter. They can be expressed in various ways, and some of them
allow us to calculate the new bound-state norm easily. For instance, for

X
n$ =rg [oz—i— f (rsh? d}':' (23)
—-00
where the shape parameter « is strictly positive, the normalized wavefunction is given by
v =a'?/nf. (24)

In the same way, T; and 7, do not modify the bound spectrum; when V; = 0, I- and
r-solutions are simply exponential functions, so that V| is also 0,

Table 1 summarizes the properties of the four supersymmetric transformations. They
lead to the following comments: (i) the theorem (12) is satisfied by Rf‘) and T,U‘); {ii)
reflection and transmission probabilities are not affected by supersymmetric transformations;
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Table 1. Single supersymmetric transformations.

Type Spectrum modification R¥} T Norming constants
k- i ki —e?
: RP = _E-fpm o) (4 (i
Ty Suppression of £ | o T Tie h P Cs
W _ k=l ;
n k + e Ty (B # &)
k —ie g M
T No modification RE = EoXpm oy G o0
k +ie Ky—¢€
Tl(k) = TU‘) (EJ ;(; £)
L Y
T No modification RE = _ e WL c = y-F ci’
k—ic kj+e
¥ =1 (E; #€)
k41 ; el
T, Addition of £ RO = 2K pe o) G HENT i
. ﬁ_ -i-€|e Kji—€
k .
Tlm > 7]}( ) CF) arbitrary

(iii) in parucular a reflectionless potential remains reflectionless; (iv) for T,, the norming
constant C; % can be arbitrarily chosen, for instance by fixing « in (23).

Let us ﬁnally discuss the problem of singularities in the potential due to supersymmetric
transformations. The modification term in (16) vanishes faster than x~2 at infinity. Where
og has nodes, it has non-integrable singularities. This can be seen using a series expansion.
Hence, when Vp is L}, Vi is L} if the factorization function oy has no node, i.e. only when
£ £ E;. In other cases, the supersymmetric transformation gives rise to a singular potential,
and equation (17) shows that its solutions have singularities at the same locations. Actually,
equations (17) to (24) remain valid between gp nodes, since they are deduced from the local
relation (17). Attention has only to be paid when an integral form is used, as for instance
in (22}). In these particular cases, the mtegral form is valid as long as the integral is well
defined (which is true in (22), even if 1,&0 has nodes).

Conversely, a supersymmefric transformation can remove potential singularities when
Vo itself results from a supersymmetric transformation with factorization energy &£ larger
than E;. In what follows, we limit ourselves to L} potentials, but we sometimes use this
kind of singular potentials in intermediate steps (an example appears in appendix A).

4, Pairs of supersymmeiric transformations

Single supersymmetric transformations give rise to many different potentials, However,
singularities occurring as soon as £ > E; apparently reduce the number of cases of
physical interest. It has been recently shown, in the radial case [20-22], that some pairs
of supersymmetric transformations, at the same factorization energy £, can lead to regular
potentials V3, even when £ > E;. In this case, intermediate potentials V; are singular at a
finite number of points, and have no physical significance.

The same principle can be applied on the line, where the number of interesting cases is
larger: only three pairs are useful in the radial case, whereas seven pairs occur here. The
potential V3, resuiting from the pair (7%, ), i.e. from successive applications of 7.
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and T on Vp, using (16) reads
d2 y, d2 - .
Vo=Vi—2o5n 128 = v — 2551 o), (25)

Four types of single transformations lead to sixteen possible pairs. However, spectrum
modifications make some pairs impossible: it is impossible to suppress or to add a bound
state twice, so that (Ty, Ty) and (T, T,) do not exist. In the same way, (T7, Ty), (T, Ty),
(T,. T)), and (¥, T,) do not exist, since £ cannot be simultaneously physical and non-
physical in the same spectrum, On the other hand, equation (25) shows that the pair of
transformations does not modify the potential when r; is proportional to a7, as in (7}, ),
(7;, T;) and (T, T).

Of the sixteen pairs, six are impossible and three are trivial. The seven remaining pairs
are all used in what follows. The potential V3 and its solutions can be expressed in terms of
Vo and its solutions. Solutions ¢ are expressed in terms of solutions ¢ in the differential
form (17). Solutions ¢ are expressed in terms of solutions gy in integral form, either
deduced from (17)-(20) by using equation (3) for E # £, or deduced from (4) as in (22)
for E = £. The validity of this integral form between op nodes has to be verified by direct
calculation.

Let us introduce the integrals

X
26, 1) = [ Oy gy ©8)
*o0

where at least one energy is negative, and where the integration limit is chosen so that the
integral converges. ‘This is possible in all cases that are useful in what follows. When
the two solutions are physical, both integration limits arc allowed; in this article, we
arbitrarily choose —oo. When E 3 E', these integrals are proportional to the corresponding
Wronskians, as can be seen on (3} with Xy = 00 and Wy = 0. However, they are also
defined when E = E’.

These @-functions lead to unified equations for the seven pairs (we treat (7;, T;) in
detail in appendix A; other cases are similar):

Vo= Vo— Zd(i—zz In |8 + ®log, oo}l @27
PE = N [qa},m _ gg_%_‘fr_:}:_‘;%:l 23)
where
0 (1. T (T, F,), (Ty, T}
-1 (Ty. T0)
B={a (1. T.) (29)
- (T, T
| @/(1 — o) Ty, T)

in which o is a strictly positive parameter, to be defined only when £ is a bound state of
Va, ie. when p =n'®. When E # £, ¢l and ¢ in (28) are of the same type, and this
type can only be i, [ or r: equation (28) does not give n-solutions, On the other hand,
when E = £, equation (28) only gives the physical wavefunction tjxég}, and qoég) has to be

of the same type as op.
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The normalization constant N® equals 1, except in the following cases: for a bound
state of V, at energy £, where

N©Y = 7172, (30)
For a scattering state with og and 1) regular at —oo, where

N® = (k —ie)/(k + i¢) (31)
or with o and 1) singular at —oc, where

N® = (k +ie)/(k —ic). (32)

Let us note that the ®-functions used in {27) and (28) are well defined in all useful cases.
Moreover, Vs is L} and ¢i® is C!. The seven pairs of supersymmetric transformations
lead thus to physmal potentials and to analytical expressions of their solutions, for any
factorization energy £ < 0. Th1s strlkmg fact can also be directly established by
replacing (27) and (28) in quoz = Eg 2

Table 2, Pairs of supersymmetri¢ transformations.

Type $pectrum modification RW T Norming constants
w_ (k=ie\ L@ G _ ot
Ty, T} Suppression of £ R = (m) Ry cl'=Cy
lc - IE
(To T Suppression of £ A® =R"" c = g%: ci
W k—ie
T, T Ei £ E
I Tkt (& #6
(T, 71) No modification R = :—;E) RP i = 5L+-:- c
X —
=1 (Ej #£)
N2
I w _ (AN o) _ (% —el
(T 5 No modification R = (E'-—IE) Ry o= P C{‘,"
=7 (£} £ 6)
(T T) Neo modification RY = R[:,"’ c%“ =ci?
% _ el &)
o =T P =2
: w _ (Rt w ) _
(T Ta) Addition of £ R = (k——;) RY c¥ =cf
k
™ = - + l: T P = a2
I
* 1Ny 4o EAP (Ex)fr({s)[
a7 Addition of £ RY = g et = %_-a:_: i
-
sz : + l: 7-(!) C("'j = 2ee?
— K

% 1Moy 00 €xp (€2 /|15

Spectrum modifications, reflection and transmission coefficients, and norming constants,
are gathered in table 2 for each pair of transformations. They can be obtained either from
table 1, or by direct calculation with (28).
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5. Iteration of single transformations

Let us consider a sequence of M single supersymmetric transformations, with distinct
factorization energies &1, ..., &y, and with fatorization functions &, = a,,ff"‘*‘), such that
the potential yemains L| at each step. Except for £ < Ej, this condition depends on
the sequence of transformations and cannot be expressed simply. Successive potentials are
linked together by single transformations (equation (16)) as

2

d
Vass = Vi = 20 In ol (33)

withm =0,..., M — |, and o, nodeless.
On the other hand, a unified equation gives the link between solutions of two successive
equations

Gof,f:] = ,ﬁ;w((f’,{f), Om)/Om. (34)
When E # &nyr, 0F and 99,(,;521 in (34) are of the same type. When E = &1,

ga,(fj’_’;" is of type o', and the type of o) must be different from the type of o,

(see section 3). The normalization coefficient N,fi), equals 1, except in the following cases:
when E $ &, corresponds to a bound state, mﬂll = |E; — Eptt] /2 (see equation (18));
when E = £, is 2 bound energy of V., the Wronskian W of (34) is constant and
m“f;‘,*‘) = &y 1-1Y2W-'; when E is a scattering state, N,ff‘l] = i/(k £ i€nt1)
according to whether o, is regular or singular at —oo {see equations (I9) and (20)).
Equations (33) and (34) are particularly useful, since they allow us to prove (see
appendix B) that the final potential V), and its solutions can be expressed in terms of
M and (M + 1)-dimensional Wronskians involving solutions of the initial equation only as

d2
Vir = Vo =25 ImIWiog™, ... og™)| (35)
- B (£ £
o = (] veE, ) P o 06 36)
w0 W e
where the Wronskian W{#), ..., fa) is the determinant of an M dimensional matrix whose

elements read WPY = d7f, /dx? for p=0,.... M—1landg=1,..., M, and O'O(E"H) is
of the same type as o,

These equations, which generalize the results of [7], call for several remarks:

(i) If Vg is even, other potentials V., are also even when factorization functions are
chosen symmetric; this is only possible with y- and r-functions, and requires particular
values of the shape parameters in the n-functions. This ability of conserving symmetry in
a controllable way will not occur in the other methods discussed below,

(i) Supersymmetric transformations modify the number of nodes of solutions. Let us
consider an example: (Tf’) . I}(E) ) with E| < E < E,, which removes the ground state at
energy E; and then modifies the potential without modifying its spectrum. The solutions
wé” and ZfE} have no node, so that V) and V, are regular, On the other hand, Ié““) has one
node at finite distance, as seen in section 2. The first transformation thus removes one node
from this function. Consequently, it is not surprising that functions appearing in Wronskians
of (35) and (36) have nodes. This is particularly dramatic with T,, transformations, whers
the shape parameter determines the number of nodes of the ri-solution, and has to be chosen
so that the potential remains regular. An important example of this phenomenon is given
in subsection 7.4,
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(iif) The result is unaffected by any permutation of supersymmetric transformations,
since this simply corresponds to permutations of columns in determinants, and signs of
determinants have no consequence. This shows that the potential can have singularities
at intermediate steps, but recover regularity after the last wansformation. A sufficient
condition for the final potential to be regular is that there exists an order of application
of the transformations for which the potential is regular at each step, as assumed in this
section.

(iv) Following remark 2 in section 3 of [7], an alternative form of Wronskians of
solutions exists. It only involves solutions and their first derivatives, and can be obtained
using the initial equation (2).

6. Iteration of transformation pairs

Let us now consider a sequence of M supersymunetric transformation pairs, with distinct
factorization energies £. .. .. &y, and with first factorization functions s, = az(,i"“). There
is no particular condition on these energies, unlike for iterations of single transformations,
as seen in section 4. The potential remains L} at each step. Potentials and their solutions
are linked together by equations (27)-(32)

d2
Vagms1y = Vam — 2&—2 In | Bt + P (O2m, o2m)| (37)
Pom+1) L | o e (aes am)

form =0,..., M — 1. The subscripts of N} and B refer to the factorization energy Ep.1.

As in the case of single wansformations, these equations allow us to express (ses
appendix C) the final potential Va), and its solutions in terms of the initial equation solutions
only, as

. dz
M-1 e

i = (H N ;,) det Yo(e5™)/ det Xo. (40)
m=0

In these expressions, Xo is an M-dimensional matrix, whose elements read, for p,q¢ =
1,.... M,

£
XD = B8y + O, 0 41
and Yo(gaéa)) is an (M 4 1)-dimensional matrix, whose elements read
xh9 (p.g>0)
£
Py, (E} o (p>0,4=0)
Y5 'q(‘Po )= E) ) (42)
Plpg  op ") (p=0,g>0
o5 (p=q=0).

In these equations, ®-functions are defined in (26); Ués’"“) is of the same type as ou,,; B and
N'E) coefficients are given by equations (29) and (30)-(32), respectively, When E does not
belong 1o the set of factorization energies, @5, and gof,E) in (40) are of the same type and



Supersymmetric transformations on the line 5089

cannot be of type n. When E = £,,.;, equation (40) only gives the physical wavefunction
glréf;'“}, and qo((,‘g"'“) has to be chosen of the same type as ¢2,. In this particular case,
det Yo(go,gs”'“}) can be reduced to an M-dimensional determinant by subtracting row m + 1
from the similar row 0.

As for single transformations (remark (iii} of section 5), determinants appearing in (39)
and (40) simply express the commutativity of transformation pairs. On the other hand,
transformation pairs behave differently from single transformations as far as symmetry is
concerned: they do not conserve it since they contain 7; or 7, transformations (this is not the
case for (Ty, T,,), but this pair has no effect on the potential when it conserves symmetry).

7. Applications and comparisons with existing works

7.1. The reflection-coefficient method

Without modifying the reflection coefficient R™), (T, T,) and (T}, T,) respectively suppress
and add a bound state, whiie (T}, 7,,) modifies its norming constant. This can be seen in
table 2. Iterating these three pairs constitutes the reflection-coefficient method (R-method),
which leads to arbitrary modifications of the bound spectrum and of norming constants,
without modification of the reflection coefficient 2t any energy. According to the unicity
theorem of section 2, the R-method thus allows us to construct alf L} potentials having the
same reflection coefficient as a given L! potential. Let us note that the control of norming
constants with this method is not simpie: any spectrum modification changes all norming
constants. Restoring them then requires 2 (T, T} transformation pair for each bound state.
Actnally, this pair has the advantage of modifying arbitrarily one norming constant without
modifying the others.

Abraham and Moses [11] present an algorithmic method, based on the Gel’fand-Levitan
equation, which allows the same modifications of a given potential as the R-method. The
link between both methods is proved for ground-state deleticn, addition and renormalization
on the line in [23], and for ground-state deletion in the radial problem in [26).

Establishing the exact equivalence between the Abraham-Moses and R-methods closely
follows the analogous discussion of [20, 23] (see below), and we shall not reproduce it here.
Let us simply mention that the R-method gives explicit solutions of the Abraham-Moses
equation, instead of algorithmic solations. Pursey and Weber [27] find similar solutions of
this equation in the radial case.

7.2. The norming-constant method

Without modifying the norming constants of other bound states, (Ty,T;) and (T}, Tp)
respectively suppresses and adds a bound state, while (7y, 7,,) modifies its norming constant.
This can be seen in table 2. Iterating these three pairs constitutes the norming-constant
method (C-method), which leads to arbitrary modifications of the bound spectrum and of
some norming constants, without modifying the other norming constants. It is particularly
useful in the radial problem [23], where it presents the additional property of conserving
phase shifts. Compared with the R-method, the C-method is useful when one needs to
control the norming constants.

On the other hand, the C-method modifies the phase of the reflection coefficient but does
not modify its modulus, as can be seen in section 3. The unicity theorem of section 2 does
not warrant that the C-method provides all potentials sharing specific properties, except
in the case of reflectionless potentials: in fact, the C-method allows the construction of
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all L} reflectionless potentials, starting from one of them, with a total control of norming
constan(s.

Let us note that the C- and R-methods are formally very close to one another (the roles
of +oo and ~oo are just inverted). In spite of this similarity, they have quite different
properties, because of the asymmetry between <00 and ~o0, introduced by the basic
definitions (6), (10), and (11) of the fine problem. A formal link between the Abraham—
Moses and C-methods is given for the ground state in [16] and for arbitrary modifications
of the bound spectrum in [20,23], in the case of the radial problem.,

In [10], Pursey proposes a method based on the Marchenko equation (instead of
the Gel'fand-Levitan equation used by Abrabam and Moses), which allows the same
modifications of a given potential as the C-method. The link between the Pursey and
C-methods is made in [26] for a ground-state deletion in the radial case. A general proof
of equivalence is very close to that of [20, 23]. We shall not reproduce it here. Let us only
mention, as for the R-method, that the C-method leads to general analytical solutions of the
Pursey equation, and that Pursey and Weber also find these solutions in [27] for the radial
case.

7.3. Removing M bound states of a given potential

Leat V, have at least M bound states, Three main methods can be used to remove bound
states:

() T, ... TS, where £, = E,. The final potential is regular if and only if the
removed bound states are the lowest ones. The order of application (E; to Ey) is only
important if one wants the potential to remain regular at each step, This method maintains
a possible Potential symmetry and is used by Deift and Trubowitz [7].

(@) (T2, T, .., (TE, TE%0), where the &, belong to the initial bound spectrum,
This method conserves the reflection coefficient (R-method), and is equivalent to that of
Abraham and Moses [11].

iy (T, ), ..., (TP, 1), where the £, belong to the initial bound spectrum.
This method conserves the norming constants of the remaining bound states (C-method),
and is equivalent to that of Pursey [10].

For (i1) and (ii1), the removed bound states cannot be the lowest ones and a permutation
of energies does not make the potential singufar at intermediate steps, anlike for (i). For
each method a direct analytical equation exists (particular cases of sections 5 and 6). An
analytical equation also exists when (it) and (iii) are mixed (section 6). In contrast, when
(i)-(ii) are mixed, no simple analytical equation is available.

7.4. Adding M bound states to a given potential

As for the preceeding case, three main methods exist:

(i) T, ..., T Here, the validity condition on energies can be expressed as
E > & > ... > &y. Functions nff"" appearing in Wronskians of (35) and (36) must
be nodeless if m is odd, and have one node if m is even. This is a consequence of remark
(ii) of section 5. This method is used in [3,4,7].

(i) (T, TEY, . (T, TE), where the &, do not belong to the initial bound
spectrum (&-method).

(i) (T2, TEY), .., (T TEw)y, where the £, do not belong to the initial bound
spectrum (C-method).

For methods (ii) and (iif), and for a mixing of all methods, the same comments as in
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subsection 7.3 apply. In particular, for methods (ii) and (iii), the added bound states do not
have to be below the initial ground state. In the same way, comments concerning the order
of application and singularities are similar to those of subsection 7.3. ;

Method (i) has been used quite often in previous works in the case Vg = 0 [3,4,7].
The same result can be obtained by other methods [12,13], and linked with vertex
operators [6, 14]. This is found in a study of solitons with the Korteweg—de Vries equation,
whose solutions are reflectionless potentiais. In this context, the number of bound states
and their norming constants have a direct physical meaning [14] (see also [26]).

7.5. Most general supersymmetric transformation of a given potential

An iteration of T, or 7; transformations at a given energy gives rise to a countable infinity
of different isospectral potentials (the fact that R® changes at each step ensures that these
potentials are different). Non-physical negative energies form a continpum, so that the
different potentials obtained from supersymmetry are not countable. In fact, the most
general transformation of a given potential can be performed in three steps:

(i) deletion of all bound states of the initial potential, using method (i) of subsection 7.3;

(ii} arbitrary number of 7, or T; transformations, for any negative energy (not only for
removed energies or for energies of final bound states);

{ii}) introduction of bound states of the final spectrum, using method (i) of subsection 7.4.

In some cases, this method is a particular case of iterative methods of sections 5 and 6,
and a compact analytical result exists. For instance, the application of (T, T;) at any
non-physical energy does not require deletion and reintroduction of all bound states.

7.8, Isospectral potentials

The general process explained in subsection 7.5 can be specialized in order to construct
isospectral potentials: the bound states introduced at step (iii) must have the same energies
as the initial bound states removed at step (i}. The class of isospectral potentials obtained
from supersymmetry can be compared with existing results.

Keung ef al [5] construct an M -parameter family of isospectral potentials with M bound
states by first removing the M bound states with successive Ty, and then reintroducing
them with successive T,,. This is equivalent to M successive (T, T,,) pairs, each of them
introducing an arbitrary shape parameter, and performed in arbitrary order.

Khare and Sukhatme [9] generalize this method by considering three ways of deleting
the ground state and three ways of reinserting it. They note that, among the nine possible
resulting transformations, only five are distinct. In the present notation, the three suppression
methods correspond to Ty, (Ty, T;), (T, Ti), while the three addition methods correspond
to T, (T., 1), (T;, T,). Taking into account that (7,,7;) and (7}, T;) are trivial pairs
(see section 4), one directly obtains five ways of renormalizing the ground state, namely
Ty, T Ty T T, (T 10, 1), (T T2, T) and (Ty, T2, T,,). These anthors show that
iterating these methods leads to a countable infinity of isospectral-potential families. In the
present notation, this iteration corresponds to (Ty. T, ..., Tr. ) or (Ty, Ty, ..., T1, Ty) at
each energy of the bound spectrum, since (7, Ty) is trivial.

The number of isospectral potentials obtained from general supersymmetric
transformations is larger than the result of [9], since T, and 7; transformations can be
used for @il negative energies. Moreover, in some cases compact analytical equations exist.
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8. Conclusion

On the line as in the radial case, supersymmetry is a powerful way of analytically
constructing new potentials and their solutions, starting from a given potential and its
solutions. The case of L} potentials is studied here, in order to simplify proofs and to
use a unicity theorem. A generalization of supersymmetry to more general potentials is
possible.

The properties of all single transformations and of all transformation pairs are
established. The condition on the factorization energy disappears when a pair is used.
The results, summarized in tables ! and 2, show that supersymmetry is not able to modify
the reflection and transmission probabilities, but can modify the bound spectrum, norming
constants, and the phases of the refiection and wansmission coefficients.

General iterative methods of single transformations and of transformation pairs are
explored. Among them, a method based on single transformations (section 5) can maintain
an even symmetry of the potential; the R-method (subsection 7.1) conserves the reflection
coefficient at all energies and gives rise to all potentials having the same R® as a
given potential; the C-method (subsection 7.2) conserves norming constants and allows
the construction of all reflectionless potentials, with a total control of norming constants.

Examining supersymmetric transformations systematically afliows us to clarify the
relations between existing methods, and gives rise to new ones. In particular, the number of
different potentials (subsection 7.5) and of different isospectral potentials (subsection 7.6)
obtained by supersymmetry is farger than any previous result. This could be particularly
interesting in several physical problems linked with the inverse problem [15].
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Appendix A

In this appendix, we establish in detail equations (27)(32) for (7, T®)), with £ < 0.
Solutions of H, can be expressed in terms of those of Hp in integral form. For E # £,
equations (17)~(19), (3) and (26) lead to

18 o, 18110 (A1)
r? = 0P 1010 A2)
P = 18— PP, )i (A3)
® =itk — i)y ey, )18, (A4)
For E = £, equations (17} and (4), with xg = —c0 and Wy = |, give
rl{E) = (téﬁ))—l (AS)
and
19 = 0, 1819 (A6)

Multiplicative constants are introduced in order to simplify equations (A1)—(A3) and (AS).
Integrals appearing in these expressions are well defined, even when lé ) has nodes.
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Between I((,E} nodes, these funciions are solutions of the Schridinger equation, with
potential

& e
In the case of (A6), this can be shown by a direct calculation. At Ig‘" nodes, both the
potential and its solutions are singular.

The second transformation requires choosing n‘f’. With (AS5), equation (23) provides

Vi=W-2

ni?:) - (léﬂ)—l [Ct + Qagﬂl‘ l(()E})] (AS)

where & > 0. Equation (25) then leads to

d2
Ve=Vo—2 5 Injo + o2, 1) (A9)

which is identical to (27) for (7}, 7,), and has no singularity. On the other hand,
equations (17), (18), and (20) kept in differential form for the second transformation,
combined with (A1)-(A4), lead to (28)(32) for E s £. Finally, equations (24) and (A8)

give

£ gy 16 I

v - 1(5)_15)@(1( . 15) (A10)
P a0 ar e D)

which is the extended form of (28)(32) for £ = £. The solutions of V; are correct between
lé’s} nodes, but they are also continuous, so that they are correct everywhere. In particular,
the singularities of the intermediate potential ¥ and of its solutions are removed by the
second transformation.

Appendix B

Here we deduce equations (35) and (36) from equations (33) and (34). Equations (33)
and (34) for m = O are respectively identical to (35) and (36) for M = 1. We now prove
that if (35) and (36) are valid for some value M — 1, they are still vatid for the next value
M.

Let us apply to potential V] a set of modifications at the M — 1 energies &;,...,Ey.
Then, equation (35) implies that Vjs reads

d?.
Vi =Vi =27 \W(ol), ..., oy (B1)
or
dz
Vi =Vo—2771n oW (e, ..., oy (B2)

with op = dé‘g‘). For m = 0, equation (34) can be written as

et &) 4o
0P = MO [____% + B2 ®3)

dx op dx

so that

dr (E) gptl (£) (E) dr p=1 & (E)
b NI(E) _ %o + %o % +Z AP(6y) % . (B4)

dx? dx~+! og dxrt! dxs
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The expressions Al (og) are complicated; they contain op and its p first derivatives only,
with A = A‘J_l = 0 by convention.

The Wronsgkian in (B2) can be transformed by multiplications and subtractions of its
rows into

aree o Ik
W.—:de:l T —g Al (o) — (B5)

with p =0,...,.M—2and g = 2,..., M. The normalization of factorization functions
has no importance, since a multiplicative constant does not modify the effect of the
transformation on the potential. Consequently, N’,(g') can be taken to be equal to —1.
Hence, equations (B4) and (B5) lead to

dp+lo.é£q> O';&') dp-i-lo.o]

W-.:det[ et - o Lopt

(B6)

which, using a determinantal property derived in the appendix of [19], implies
W, e = W, ..., o) /o0 B7

Combining equations (B7) and (B2) proves the validity of (35).
The proof of (36) follows the same pattern: the validity of (36) for M —~ 1 implies

— £ &
o0 = ([T ae,) oot at) (BS)
m=1 " W{U—](El] Yoo 0-1(“:“))
The Wronskian elements can be transformed as in (B5) and (B6) into
W, o o) = NPWER, o, ..., o) oy, (B9)

Combining equations (B7). (B8) and (B9) proves equation (36).

Appendix C

Here we deduce equations (39)~42) from (37) and (38). Equations (37) and (38) form =0
are identical to (39) and (40) for M = 1. We now prove that if (39)~(42) are valid for some
value M — 1, they are still valid for the next value M.

Let us apply to potential V, a set of modifications at the M — 1 energies &, ..., Ey.
Then, equations (39) and (41) imply

d2
Vo = Vo, — 2—In| det le (C1)
dx?
where X; is a matrix of order M — 1, whose elements for p.g =2,..., M read
XP = BySpg + Bloy ", 0y). €2
Equation (38), written for m = 0, allows us to calculate, using (26)

Ey - D(@s”, o0)@(x$"?, ap)
B1 + ®(ao, %)
(E")

where (p;'E"’ and y,” ° are factorization functions. The determinant property derived in the
appendix of [19] implies

det X = [ + ${o0, o)1 det Xp (C4)

(i, 135 = o, x4 (C3)
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where X, is defined in (41). Equation (C4), combined with (C1) and (37) for m = 0, proves

equation (39).
The proof of (40) and (42) follows the same pattern: their validity for M — | implies

that

M
vi = (H N,-Si’,) det Y2(p")/ det Xa (C5)

m=]
where Yz(gﬂgE)) is a matrix of order M, whose elements are defined as in {42), with subscript
0 replaced by 2, and for p,¢ =0, 2, ..., M. Equations (C2), (C3) and (38) imply that
1) = 1 0f®) — Y e o) Y (0 (c6)

for p=2,....Mand g =0,2,..., M. An equation analogous to (C3) with a suitable
normalization, equations (C2} and (38) imply that

$9eP) = NP [ 57 @) - B a1 @) 7 o) (&)

for g = 0,2,..., M. Using the same determinant property as above, equations (C6)

and (C7) lead to

det Yo(piF)

detY (E) _N(E)______O_.-
1) =N S on, o)

Combining equations (C4), (C5) and (C8) proves equations (40) and (42),

(C8)
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